
INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY & CREATIVE ENGINEERING (ISSN:2045-8711)
 VOL.1 NO.2 FEBRUARY 2011

30

Software Cost Regressing Testing Based
Hidden Morkov Model
1Mrs. P.Thenmozhi, 2Dr. P. Balasubramanie,

1
Assistant Professor, Kongu Arts and Science College,

Erode – 638 107, Tamil Nadu, India,
2
Professor & Head, Department of Computer Science and Engineering,

Kongu Engineering College,Perundurai – 638052, Tamil Nadu,

Abstract— Maintenance of software system accounts for

much of the total cost associated with developing

software. The nature of the modifying the software is a

highly error-prone task which is the main reason for the

cost. Correcting fault by changing software or add new

functionality can cause existing functionality to regress,

introducing new faults. To avoid such defects, one can re-

test software after modifications, a task commonly known

as regression testing. Re-execution of test cases

developed for previous versions is typically called

Regression test. However, is often costly and sometimes

even infeasible due to time and resource constraints. Re-

running test cases that do not exercise changed or

change-impacted parts of the program carries extra cost

and gives no benefit. This paper presents a novel

framework for optimizing regression testing activities,

based on a probabilistic view of regression testing. The

proposed frame- work is built around predicting the

probability that each test case finds faults in the

regression testing phase, and optimizing the test suites

accordingly. To predict such probabilities, we model

regression testing using a Hidden Morkov Model Network

(HMMN), a powerful probabilistic tool for modeling

uncertainty in systems. We build this model using

information measured directly from the software system.

The results show that the proposed framework can

outperform other techniques on some cases and

performs comparably on the others. This paper shows

that the proposed framework can help testers improve the

cost effectiveness of their regression testing tasks.

Keywords: Software testing, Testing tools, Regression

testing, Software maintenance

1. Introduction

 The nature of Software systems is to evolve with

time and specially as a result of maintenance tasks.

Software maintenance is defined as “The modification of

a software product after delivery to correct faults, to

improve performance or other attributes, or to adapt the

product to a modified environment”.

The presence of a costly and long maintenance

phase in most software projects, specially those

manipulating large systems, has persuaded engineers

that software evolution is an inherent attribute of

software development. Moreover, maintenance activities

are reported to account for high proportions of total

software costs, with estimates varying from 50% in the

80s to 90% in recent years. Reducing such costs has

motivated many advancements in software engineering

in recent decades. The objective of maintenance is “to

modify the existing software product while preserving its

integrity”. The later part of the stated objective,

preserving integrity, refers to an important issue raised

as a result of software evolution. One need to ensure

that the modifications made to the product for

INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY & CREATIVE ENGINEERING (ISSN:2045-8711)
 VOL.1 NO.2 FEBRUARY 2011

31

maintenance have not damaged the integrity of the

product.

From theory and practice that changing a

system in order to fix bugs or make improvements can

affect its functionality in ways not intended. These

potential side effects can cause the software system to

regress from its previously tested behavior, introducing

defects called regression bugs. Although rigorous

development practices can help isolate modifications,

the inherent complexity of modern software systems

prevents us from accurately predict the effects of a

change. Practitioners recognized such a phenomenon

and hence are reluctant to change their programs in fear

of introducing new defects. Researchers have tried to

find ways of analyzing the impact of a change on

different parts of a system and predicting the effects. In

absence of formal presentations of software systems,

however, such attempts, although helpful, will not

provide the required confidence levels.

Unless we are able to find regression bugs,

once they occur, Software maintenance remains a risky

task. Despite the introduction and adaptation of other

verification methods (such as model checking and peer

reviews), testing remains the main tool to find defects in

software systems. Naturally, retesting the product after

modifying it is the most common way of finding

regression bugs. Such a task is very costly and requires

great of organizational effort. This has motivated a great

deal of research to understand and improve this crucial

aspect of software development and quality assurance.

 This paper is organized as follows. Literature

surveys are given in section 2. In section 3 we will

devote ourselves to discussing the probabilistic

modeling and reasoning in detail. Conclusions will be

drawn in section 5.

2. Literature survey

In this section, research areas related to the

topic of this paper are elaborated. The subject to start

with is that of the problem in question, “Software

Regression Testing”. There exists an extensive body of

research addressing this problem using many different

approaches. This section takes a critical look at this line

of research, trying to find strong points and ideas as well

as the gaps. Through this examination, many terms and

concepts related to software testing area will be

introduced as well.

2.1 Software Regression Testing

Research in regression testing spans a wide

range of topics. Earlier work in this area investigated

different environments that can assist regression testing.

Such environments particularly emphasize automation

of test case execution in the regression testing phase.

For example, techniques such as capture playback have

been proposed to help achieve such an automation.

Furthermore, test suite management and maintenance

have been addressed by much research. Measurement

of regression testing process has also been researched

extensively and many models and metrics have been

proposed for it. Most of the research work in this area,

however, has focused on test suite optimization.

Test suite optimization for regression testing

consists of altering the existing test suite from a previous

INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY & CREATIVE ENGINEERING (ISSN:2045-8711)
 VOL.1 NO.2 FEBRUARY 2011

32

version to meet the needs of regression testing. Such an

optimization intends to satisfy an objective function,

which is typically concerned with reducing the cost of

retesting and increasing the chance of finding bugs

(reliability). There exists a variety of techniques

addressing this problem. Most of these techniques can

be categorized into two families of test case selection

and test case prioritization. Regression test selection

techniques reduce testing costs by including a subset of

test cases in the new test suite. These techniques are

typically not concerned with the order in which test

cases appear in the test suite. Prioritization techniques,

on the other hand, include all test cases in the new test

suite but change their order in order to optimize a score

function, typically the rate of fault detection. These two

approaches can be used together; one can start with

selecting a subset of test cases and then prioritize those

selected test cases for faster fault detection. The rest of

this section first looks into test case selection

approaches from the literature and then touches up to

an existing techniques for test case prioritization.

2.1.1 Test Case Selection

Test case selection, as the main mechanism of

selective regression testing, have been widely studied

using a variety of approaches. In a survey of techniques

proposed up to 1996, Rothermel and Harrold[12]

propose an approach for comparison of selection

techniques and discuss twelve different family of

techniques form the literature accordingly.They evaluate

each technique based on four criteria: inclusiveness (the

extent to which it selects modification revealing tests),

precision (the extent to which it omits tests that are not

modification revealing), efficiency (its time and space

required), and generality (its ability to function on

 different programs and situations). These four criteria,

in principle, capture what we expect form a good test

case selection approach. These four criteria inherently

impose a trade-off situation where proposed techniques

usually satisfy one of the criteria in expense of the

others.

Main Approaches

An early trend in test selection research evolved

around minimizing test cases selected for regression.

This approach, often called test case minimization, is

based on a system of linear equations to find test suites

that cover modified segments of code. Linear equations

are used to formulate the relationship between test

cases and program segments (portions of code through

which test execution can be tracked, e.g., basic-blocks

or routines). This system of equations is formed based

on matrices of test-segment coverage, segments-

segment reachability and (optionally) definition-use

information about the segments. A 0-1 integer

programming algorithm is used to solve the equations

(an NP-hard problem) and find a minimum set of test

cases that satisfies the coverage conditions. This

approach is called minimization in the sense that it

selects a minimum set of test cases to achieve the

desired coverage criteria. In doing so, test cases that do

cover modified parts of code can be omitted because

other selected test cases cover same segments of the

code.

A different set of approaches have focused on

developing safe selection techniques. Safe techniques

aim to select a subset of test cases which could

guarantee, given certain preconditions, that the left-out

test cases are irrelevant to the changes and hence will

pass. Informally speaking, the aforementioned

conditions as described in are:

INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY & CREATIVE ENGINEERING (ISSN:2045-8711)
 VOL.1 NO.2 FEBRUARY 2011

33

• the expected result for test cases have not

changed from the last version to the current

version;

• Test cases execute deterministically (i.e.,

different executions results in identical execution

path).

Safe techniques first perform change analysis to

find what parts of the code can be possibly affected by

the modifications. Then, they select any test case that

covers any of the modification-affected areas of the

code. Safe techniques are inherently different from

minimization techniques in that they select all test cases

that have a chance of revealing faults. In comparison,

safe techniques usually result in a larger number of

selected test cases but also achieve a much better

accuracy.

Many techniques are neither minimizing nor

safe. These techniques typically use a certain coverage

requirement on modified or modification affected parts of

code to decide whether a test case should to be

selected. For example, the so-called dataflow-coverage-

based techniques. select test cases that exercise data

interactions (such as definition-use pair) that have been

affected by modifications. These selections techniques

are different in two aspects: the coverage requirement

they target and the mechanism the use to identify of

modification-affected code. For example, Kung et al[10]

propose a technique which accounts for the constructs

of object-oriented languages. In performing change

analysis, their approach takes into account object-

oriented notions such as inheritance. The relative

performance of these selection techniques tend to vary

from program to program, a phenomenon that could be

understood only through empirical studies.

Cost Effectiveness

Many empirical studies have evaluated the

performance of the test case selection algorithms. In

general, these empirical studies show that there is an

efficiency-effectiveness (or inclusiveness-precision in

terminology) tradeoff between different approaches to

selection. Some (such as safe) techniques reduce the

size of test suite by a small factor but find most (or all)

bugs detectable with existing test cases. Others (such

as minimization techniques), reduce the size

dramatically but can potentially leave out many test

cases that can in fact reveal faults. Other techniques are

somewhere in between; they may miss some faults but

they reduce the test suite size significantly. The

presence of such a tradeoff situation renders the direct

comparison of techniques hard.

A meaningful comparison between

regression testing techniques requires answering one

fundamental question: is the regression effort resulting

from the use of a technique justified by the gained

benefit? To answer such a question one needs to

quantify the notions of costs and benefits associated

with each technique. To that goal, researchers have

proposed models of cost-benefit analysis. These

modelstry to capture the cost encountered as a result of

missing faults, running test cases, running the technique

itself including all the necessary analysis, etc. The most

recent of all these models is that of Do et al[5]. Their

approach computes costs directly and in dollars and

hence is heavily dependent on good estimations of real

costs from the field. An important feature of their model

is that it can compare not only test case selection but

also prioritization techniques. Most interestingly, it can

compare selection techniques against prioritization

techniques.

INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY & CREATIVE ENGINEERING (ISSN:2045-8711)
 VOL.1 NO.2 FEBRUARY 2011

34

The existence of the mentioned trade-off has also

encouraged the researchers to seek multi-objective

solutions to the test selection problem. Yoo and

Harman[15] have proposed pareto efficient multi-

objective test case selection. They use genetic

algorithms to find the set of pareto optimal solutions to

two different representations of the problem: a 2-

dimensional problem of minimizing execution time and

maximizing code coverage and the 3-dimensional

problem of minimizing time and maximizing both code

coverage and history of fault coverage. The authors

compare their solutions to those of greedy algorithms

and observe that greedy algorithms surprisingly can

outperform genetic algorithms in this domain. Coverage

information, a necessary input to most existing

techniques, can be measured only if the underlying code

is available and its instrumentation is cost effectively

possible. To be able to address more complex systems,

where those conditions do not hold, some recent

techniques have shifted their focus to artifacts other than

code, such as software specification and component

models. These techniques typically substitute code

based coverage information with information gathered

from formal (or semi-formal) presentations of the

software. Orso et al[11]., for example, use component

meta data to analyze the modifications across large

component-based systems. The trend in current test

case selection research seems to be that of using new

sources of information or formalizations of a software

system to understand the impacts of modifications.

 2.1.2 Test Case Prioritization

The regression Test Prioritization (RTP)

problem seeks to re-order test cases such that an

objective function is optimized. Different objective

functions render different instances of the problem, a

handful of which have been investigated by researchers.

Besides targeted objective functions, the existing body

of prioritization techniques typically differs in the type of

information they exploit. The algorithm employed to

optimize the targeted objective function, also, is another

source of difference between the techniques.

Conventional Coverage-based Techniques

Test case prioritization is introduced in [16] by

Wong et al. as a flexible method of selective regression

testing. In their view, RTP is different from test case

selection and minimization in that it provides a means of

controlling the number of test cases to run. They

propose a coverage-based prioritization technique and

specify cost per additional coverage as the objective

function of prioritization. Given the coverage information

recorded from a previous execution of test cases, this

coverage-based technique orders test cases in terms of

the coverage they achieve according an specific

criterion of coverage (such as the number of covered

statements, branches, or blocks). Because the purpose

of RTP in their work is selective regression testing, they

compare its performance against minimization and

selection techniques. The coverage-based approach to

prioritization is built upon by Rothermel et al. in [13].

They refer to early fault detection as the objective of test

case prioritization. They argue that RTP can speed up

fault detection, an advantage besides the flexibility it

provides for selective regression testing. Early detection

makes faults less costly and hence is beneficial to the

testing process. They introduce Averaged Percentage of

Faults Detected (APFD) metric to measure how fast a

particular test suite finds bugs. They also introduce

INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY & CREATIVE ENGINEERING (ISSN:2045-8711)
 VOL.1 NO.2 FEBRUARY 2011

35

many variations of coverage-based techniques, using

different criteria for coverage such as branch coverage,

statement coverage, and fault-exposing-potential. These

coverage-based techniques differ not only on the

coverage information they use, but also on their

optimization algorithm. When ordering test cases

according to their coverage, a feedback mechanism

could be used. Here, feedback means that each test

case is placed in the prioritized order taking into account

the effect of test cases already added to the order. A

coverage-based technique with feedback prioritizes test

cases in terms of the numbers of additional (not-yet

covered) entities they cover, as opposed to total number

of entities. This is done using a greedy algorithm that

iteratively selects the test case covering the most not-

yet-covered entities until all entities are covered, then

repeats this process until all test cases have been

prioritized. For example, assume we have a system with

six elements: e1. . . e6and the coverage relations

between test cases and elements are as follows:t1→ {e2,

e5}, t2→ {e1, e3}, t3→ {e4, e5, e6}. According to a

coverage based technique, the first chosen test case is

t3 because it covers three elements, while the others

cover two elements each. After selecting t3, two test

cases are left, both of which cover two elements. In the

absence of feedback, we would choose randomly

between the remaining two. However, we know that e5is

already covered by t3; therefore t1has merely one

additional coverage, whereas t2 has two. After adding t3,

we can update the model of coverage data such that the

already tested elements do not effect subsequent

selections. This allows choosing t2before t1based on its

additional coverage. The notion of using additional

coverage is what feedback mechanism provides;

techniques employing feedback are often called

additional. Many empirical studies have been conducted

to evaluate the performance of coverage-based

 approach [13], most of which use APFD measure for

comparison. These studies show that coverage-based

techniques can outperform control techniques (including

random and original ordering) in terms of APFD but

have a significant room for improvement comparing to

optimal solutions. They also indicate that in many cases,

feedback employing techniques tend to outperform their

non-feedback counterparts, an observation which could

not be generalized to all cases. Indeed, an important

finding of all these studies is that the relative

performance of different coverage-based techniques

depends on the programs under test and the

characteristics of its test suite. Inspired by this

observation, Elbaum et al.[6] have attempted to develop

a decision support system (using decision trees) to

predict which technique works better for what

product/process characteristics. Many research works

have enhanced the idea of coverage-based techniques

by utilizing new sources of information. Srivastava

et.al.[1] propose the Echelon frame work for change-

based prioritization. Echelon first computes the basic

blocks modified from the previous version (using binary

codes) and then prioritizes test cases based on the

number of additional modified basic blocks they cover. A

similar coverage criteria used in the context of

aviationindustry called Modified Condition/Decision

Coverage (MCDC) is utilized in. Elbaum et al.[6] use

metrics of fault-proneness, called fault-index, in order to

guide their coverage-based approach to focus on the

parts of code more prone to containing faults. Recently,

in, Jeffery and Gupta[4] propose incorporating to

prioritization a concept extensively used in test selection

called relevant slices, modified sections of the code

which also impact the outcome of a test case. Their

approach prioritizes test cases according to the number

of relevant slices they cover. Most recently, Zhang et

al.[17] propose a technique which could incorporate

INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY & CREATIVE ENGINEERING (ISSN:2045-8711)
 VOL.1 NO.2 FEBRUARY 2011

36

varying test coverage requirements and prioritize

accordingly. They work also takes into account different

costs associated with test cases.

Recent Approaches

 Walcott et al.[15] formulate a time-aware version

of the prioritization problem in which a limited time is

available for regression testing and also the execution

time of test cases are known. Their optimization problem

is to find a sequence of test cases that could be

executed in the time limit and also maximize speed of

code coverage. They use genetic algorithms to find

solutions to this optimization problem. Their objective

function of optimization is based on summations of

coverage achieved, weighted by execution times.

 Their approach could be thought of as a

multiobjective optimization problem where most

coverage in minimum time is required.

All the code coverage-based techniques

assume the availability of source/byte code. They also

assume that the available code can be instrumented to

gather coverage information. These conditions do not

always hold. The code could be unavailable or

excessively expensive to instrument. Hence,

researchers have explored using other source of

information for test case prioritization.

 Srikanth et al. [7] have proposed PORT

framework which uses four different requirement-related

factors for prioritization: customer-assigned priority,

volatility, implementation complexity, and fault-

proneness. Although the use of these factors is

conceptually justifiable and based on solid assumptions,

their subjective nature (especially the first and third

factors) make the outcome dependent on the

perceptions of customers and developers. While it is

hard to evaluate or rely on such approaches, it should

be understood that it is the subjective nature of

requirement engineering that imposes such properties.

Also, their framework is not concerned with specifics of

regression testing but prioritization in general.

 Bryce et al. have proposed a prioritization

technique for Event-Driven Software (EDS) systems. In

their approach, the criteria of t-way interaction coverage

is used to order test cases. The concept of interactions

is defined in terms of events and the approach is tested

on GUI-based systems and against traditional coverage

based systems. Based on a similar approach, Sampath

et al[1]. target prioritization of test cases developed for

web applications. Their technique prioritizes test cases

based on different criteria such as test lengths,

frequency of appearance of request sequences, and

systematic coverage of parameter-values and their

interactions. Taking a different approach from coverage-

based techniques, Kim and Porter[9] propose using

history information to assign a probability of finding bugs

to each test case and prioritize accordingly. Their

approach, inspired by statistical quality control

techniques, can be adjusted to account for different

history-based criteria such as history of execution,

history of fault detection, and history of covered entities.

These criteria, respectively, give precedence to test

cases that have not been recently executed, have

recently found bugs, and have not been recently

covered. From a process point of view, history-based

approach makes the most sense when regression

testing is performed frequently, as opposed to a one-

time activity. Kim and Porter evaluate their approach in

such a process model (i.e., considering a sequence of

regression testing sessions) and maintain that comparing to

selection techniques and in the presence of time/resource

constraints, it finds bugs faster.

INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY & CREATIVE ENGINEERING (ISSN:2045-8711)
 VOL.1 NO.2 FEBRUARY 2011

37

Most recently, Qu et al.[2] use the history of test execution

for black-box testing and build a relation matrix between

test cases. This matrix is used to move the test cases up or

down in the final order. Their approach also includes some

algorithms for building and updating such a matrix based

on outcome of test cases and types of revealed faults. In

addition to research works addressing the stated

prioritization problem directly, there are research closely

related to this area but from different perspectives. Saff and

Ernst use behavior modeling to infer developers’ beliefs

and propose a test reordering schema based on their

models. They propose running test cases continuously in

background while software is being modified. They claim

their approach leads to reducing the wasted time of

development by approximately 90%. Leon and Podgurski[3]

compare coverage-based techniques of regression testing

with another family called distribution-based. Distribution-

based approaches look at the execution profile of test

cases and use clustering techniques to locate test cases

that can reveal faults better. The experiments indicate that

distribution based approach can be as efficient or more

efficient compared to coverage-based. Leon and

Podgurski, then, suggest combining these two approaches

and report achieved improvement using that strategy.

3. Probabilistic Modeling and Reasoning

The probability theory provides a powerful way of

modeling systems. It is especially useful for situations

where the effects of events in a system are not fully

predictable and a level of uncertainty is involved. The

behaviors of large complex software systems are

sometimes hard to precisely model and hence probabilistic

approaches to software measurement have gained

attention.

In the center of modeling a system with probability

theory is to identify events that can happen in the system

and model them as random variables. Moreover, the

distribution of these random variables also needs to be

estimated. The events in the real systems and hence the

corresponding random variables can be dependent on each

other. Bayes theorem provides a basis for modeling the

dependency between the variables through the concept of

conditional probability. The probability distribution of

random variables could be conditioned on others. This

makes modeling systems more elaborate but also more

complex. Different modeling techniques have been

developed to facilitate such a complex task.

Probabilistic graphical model are one family of such

modeling techniques. A probabilistic graphical models aims

to make modeling system events more comprehensible by

representing independencies among random variables. A

probabilistic graphical model is a graph in which each node

is a random variable, and the missing edges between the

nodes represent conditional independencies. Different

families of graphical models have different graph

structures. One well-known family of graphical networks,

used in this research work, is Hidden Morkov Model

Networks.

3.1 Hidden Morkov Model Networks

Hidden Morkov Model Networks (HMMN) is a special type

of probabilistic graphical model. In a HMMN, like all

graphical models, nodes represent random variables and

arcs represent probabilistic dependency among those

variables. The missing edges from the graph, hence,

indicate that two variables are conditionally independent.

Intuitively, two events (e.g., variables) are conditionally

independent if knowing the value of some other

variables makes the outcomes of those events

independent. The conditional independence is a

fundamental notion here because the idea behind the

graphical models is to capture these independencies.

What differentiates a HMMN from other types of

INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY & CREATIVE ENGINEERING (ISSN:2045-8711)
 VOL.1 NO.2 FEBRUARY 2011

38

graphical models (such as Markov Nets) is that it is a

Directed Acyclic Graph (DAG). That is, each edge has a

direction and there should be no cycles in the graph. In

a HMMN, in addition to the graph structure, the

Conditional Probability Distribution (CPD) of each

variable given its parent nodes should be specified.

These probability distributions are often called the

“parameters” of the model. The most common way of

representing CPDs is using a table called Conditional

Probability Distribution Table (CPT) for each variable

(node). Each possible outcome of the variable forms a

row, where each cell gives the conditional probability of

observing that outcome, given a combination of the

outcomes of the parents of the node. That is, these

tables include the probabilities of outcomes of a variable

given the values of its parents .The inference problem

can get very hard in complex networks. Two types of

inference, forward (causal) inference, an inference in

which the observed variables are parent of the query

nodes. The inference could be done

backwards(diagnostic), from symptoms to causes. The

inference algorithms typically perform both type of

inference to propagate the probabilities from observed

variables to the query variables. Researchers have

studied the inference problem in depth. It is known that

in general case the problem is NP-hard. Therefore,

researchers have sought different algorithms that

perform better for special cases. For example, if the

network is a polytree, inference algorithms exist that run

in linear time with the size of the network. Also

approximate algorithms have been proposed which use

iterative sampling to estimate the probabilities. The

sampling algorithms sometimes run faster but do not

give the exact right answer. Their accuracy is dependent

on the number of samples and iterations, a factor which

in turn increases the running-time.

Designing a HMMN model is not a trivial task. There are

two facets to modeling a HMMN, designing the structure

and computing the parameters. Regarding the first

issue, the first step is to identify the variables involved in

the system. Then, the included and excluded edges

should be determined. Here, the notions of conditional

independence and casual relation can be of great help.

It is important to make sure that conditionally

independent variables are not connected to each other.

One way to achieve that is to design based on causal

relation: an edge from a node to another is added if and

only if the former is a cause for the latter. For computing

the parameters, expert knowledge, probabilistic

estimations, and statistical learning can be used. The

learning approach has gained much attention in the

literature due to its automatic nature. Here, learning

means using an observed history of variable values to

automatically build the model (either parameters or the

structure). There are numerous algorithms proposed to

learn a HMMN based on history data, some of which are

resented in.

One situation faced frequently when designing a

HMMN is that one knows the conditional distribution of a

variable given each of its parents separately, but does not

have its distribution conditioned on all parents. In these

situations, Noisy OR assumption can be helpful. The Noisy-

OR assumption gives the interaction a graph with at most

one undirected path between any two vertices. between the

parents and the child a causal interpretation and assumes

that all causes (parents) are independent of each other in

terms of their influence on the child.

44.. CCOONNCCLLUUSSIIOONN

 This paper presented a novel framework for

regression testing of software using Hidden Morkov Model

Networks (HMMN). The problem of software regression test

INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY & CREATIVE ENGINEERING (ISSN:2045-8711)
 VOL.1 NO.2 FEBRUARY 2011

39

optimization is targeted using a dynamic Bayesian network.

The framework models regression fault detection and as a

set of random variables that interact through conditional

dependencies. In future Software measurement techniques

are used to quantify those interactions and Hidden Morkov

Model Networks are used to perform probabilistic inference

on the distributions of those random variables. The

inference gives the probability of each test case finding

faults; this data can be then used to optimize the test suite

for regression.

References

1. Amitabh Srivastava and Jay Thiagarajan, “Effectively Prioritizing

Tests in Development Environment”, In Proceedings of the

International Symposium on Software Testing and Analysis,

pages 97-106, 2002.

2. Bo Qu, Changhai Nie, Baowen Xu and Xiaofang Zhang, “Test

Case Prioritization for Black Box Testing”, 31st Annual

3. International Computer Software and Applications Conference
(COMPSAC 2007), 2007.

4. David Leon and Andy Podgurski, “A Comparison of Coverage-
Based and Distribution-Based Techniques for Filtering and
Prioritizing Test Cases”, Proc. Int’l Symp. Software Reliability
Eng., pp. 442-453, 2003.

5. Dennis Jeffrey and Neelam Gupta, “Test Case Prioritization Using
Relevant Slices”, In Proceedings of the 30th Annual International
Computer Software and Applications Conference, Volume 01,

2006, pages 411-420, 2006.
6. Do.H, Rothermel.G, and Kinneer.A, “Empirical studies of test

case prioritization in a JUnit testing environment”, In Proc. Of
15th ISSRE, pages 113-124, 2004.

7. Elbaum.S, Mailshevsky. A.G., and Rothermel. G., “Prioritizing
Test Cases for Regression Testing,” Proc. Int’l Symp. Software
Testing and Analysis, ACM Press, 2000, pp. 102–112.

8. Hema Srikanth and Laurie Williams, “Requirements-Based Test
Case Prioritization”, North Carolina State University, ACM
SIGSOFT Software Engineering, pages 1-3, 2005.

9. Jung-Min Kim, Adam Porter and Gregg Rothermel, “An Empirical
Study of Regression Test Application Frequency”, ICSE2000,
2000.

10. Jung-Min Kim and Adam Porter, “A History-Based Test
Prioritization Technique for Regression Testing in Resource
Constrained Environments”, In Proceedings of the International

11. Conference on Software Engineering (ICSE), pages 119–129.

ACM Press, 2002.
12. Kung, D., Suchak, N., Hsia, P., Toyoshima, Y., and Chen, C., “

On object state testing”, In Proceedings of COMPSAC’94, IEEE

Computer Society Press, 1994.
13. Orso, A., Harrold, M. J., Rosenblum, D., Rothermel, G., Soffa, M.

L., and Doo, H., “Using Component Metadata to support the
regression testing of component-based software”, In Proceedings
of the International Conference on Software Maintenance
(ICSM2001), pp 716-725, November, Florence, Italy, 2001.

14. Rothermel. G., Untch . R. H.Chu,.C and Harrold. M. J., “Test case
prioritization: An empirical study”, In Proceedings ICSM 1999,
pages 179–188, Sept. 1999.

15. Rothermel.G et al., “On Test Suite Composition and Cost-

Effective Regression Testing,” ACM Trans. Software Eng. and

Methodology, vol. 13, no. 3, 2004, pp. 277–331.

16. Shin Yoo and Mark Harman (2007), “Pareto efficient multi-

objective test case selection “, proceeding of 2007 International

symposium on software testing and analysis, ISBN 978-1-59593-

734-6

17. Walcott.K.R, Soffa. M. L., Kapfhammer G. M. and Roos. R. S.,

“Time-Aware Test Suite Prioritization”, In Proceedings of the

International Symposium on Software testing and Analysis, pages

1-12, 2006.

18. Wong W.E. Horgan .J. R., London. S., and Agrawal. H., “A Study

of Effective Regression Testing in Practice,” Proc. 8th Int’l Symp.

Software Reliability Eng., 1998, pp. 264–274.

19. Xiaofang Zhang, Changhai Nie, Baowen Xu and Bo Qu, “Test

Case Prioritization based on Varying Testing Requirement

Priorities and Test Case Costs”, Proceedings of Seventh

International Conference on Quality Software (QSIC’07), 2007.

Brief Bio-data of P.Thenmozhi

P.Thenmozhi has completed her M.Phil degree in Mother teresa
women’s University kodaikanal in 2004.She has completed 9 years of
service in teaching. Currently she is Assistant Professor, Department
of Computer Science, Kongu Arts and Science college, Tamilnadu,
INDIA. She has guided 2 M.Phil students.She has presented 5 papers
in various conferences.

Brief Bio-data of Dr.P.Balasubramanie

Dr.P.Balasubramanie has completed his M.Phil degree in Anna
University Chennai in 1990. He has Qualified for National level
eligibility test conducted by Council of Scientific and Industrial
Research(CSIR) and Joined as a Junior Research Fellowship(JRF) in
Anna University, Chennai. He has completed his Ph.D degree in
Theoretical Computer Science in 1996. He has completed 15 years of
service in teaching. Currently he is Professor, Department of Science
& Engineering, Kongu Engineering College, Tamilnadu, INDIA. He is
the recipient of Best Staff Award consecutively for two years in Kongu
Engineering College. He is also the recipient of Cognizant-Technology
Solutions(CTS) Best faculty award 2008 for outstanding performance.
He has published more than 80 research articles in International and
National Journals. He has authored 7 books with the reputed
publishers. He has guided 6 part time Ph.D scholars and number of
scholars is working under his guidance on various topics like image
processing, data mining, networking and so on. He has organized
several AICTE sponsored National seminar/ workshops.

