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ABSTRACT: In this paper, we study the Peristaltic 
transport of magnetohydrodynamic (MHD) Jeffrey fluid in 
a non-uniform porous channel with the influence of slip, 
wall properties and heat transfer under the assumptions 
of long wavelength and low Reynolds number. The 
analytical expressions for the stream function, velocity 
and temperature are obtained. The results for velocity, 
stream function and temperature obtained in the analysis 
are discussed through graphs. It is noticed that the 
velocity and temperature decrease with increasing Jeffrey 

parameter 1λ . Further it is observed that the size of the 

trapped bolus decreases with increasing 1λ .    
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 INTRODUCTION
Peristalsis is an important mechanism for mixing 

and transporting fluids, which is generated by a 
progressive wave of contraction or expansion 
moving on the wall of the tube. This mechanism is 
found in the swallowing of food through esophagus, 
chyme motion in the gastro-intestinal tracts, 
movement of ovum in the fallopian tube and many 
other glandular ducts in a living body. The 
mechanism of peristaltic transport has been 
exploited for industrial applications like sanitary 
fluid transport, roller and finger pumps, blood 
pumps in heart lung machine and transport of 
sensitive or corrosive fluids where the contact of 
the fluid with the machinery parts is prohibited.  

The inertia free peristaltic flow with long 
wavelength analysis was given by Shapiro et al., 
[1]. The early development on mathematical 

modeling and experimental fluid mechanics of 
peristaltic flow was given by Jaffrin and Shapiro [2]. 
A theoretical study of peristaltic transport of two-
layered power-law fluids is made by Usha and Rao 
[3]. Kavitha et al., [4] studied the peristaltic flow of a 
Williamson fluid in an asymmetric channel through 
porous medium. Many researchers have 
contributed to the study of peristaltic transport 
under the effect of magnetic field and porous 
channel [5–10]. 

Peristaltic transport in non-uniform ducts is 
considerable interest as many channels in 
engineering and physiological problems are known 
to be of non-uniform cross-section. Srivastava et 
al., [11] and Srivastava and Srivastava [12] studied 
peristaltic transport of Newtonian and non-
Newtonian fluids in non-uniform geometries. 
Radhakrishnamacharya and Radhakrishna Murthy 
[13] studied the interaction between peristalsis and 
heat transfer for the motion of a viscous 
incompressible fluid in a two-dimensional non-
uniform channel. Mekheimer [14] studied the 
peristaltic flow of blood (obeying couple stress 
model) under the effect of magnetic field in non-
uniform channels. He observed that the pressure 
rise for a couple stress fluid is greater than that for 
a Newtonian fluid. Also the pressure rise for 
uniform geometry is much smaller than that for 
non-uniform geometry. Hariharana [15] investigates 
the peristaltic transport of non-Newtonian fluid, 
modeled as power law and Bingham fluid, in a 
diverging tube with different wall wave forms. 

Mittra and Prasad [16] analyzed the peristaltic motion 
of Newtonian fluid by considering the influence of the 
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viscoelastic behaviour of walls. They assumed that the 
driving mechanism is in the form of a sinusoidal wave of 
moderate amplitude imposed on the flexible walls of the 
channel. Dynamic boundary conditions were proposed 
for the fluid motion due to the symmetric motion of the 
flexible walls which were assumed to be either thin 
elastic plates or membranes. Radhakrishnamacharya 
and Srinivasulu [17] studied the influence of wall 
property on peristaltic transport with heat transfer. Sobh 
[18] introduced slip effects on couple stress fluid. 
Ramana Kumari and Radhakrishnamacharya [19] 
investigated the effect of slip on peristaltic transport in 
an inclined channel with wall effects. The influence of 
slip, wall properties on MHD peristaltic transport of a 
Newtonian fluid with heat transfer and porous medium 
have been investigated by Srinivas and Kothandapani 
[20].

Among several non-Newtonian models proposed 
for physiological fluids, Jeffrey model is significant 
because Newtonian fluid model can be deduced 
from this as a special case by taking 1λ  = 0. Further 

it is speculated that the physiological fluids such as 
blood exhibit Newtonian and non-Newtonian 
behaviors during circulation in a living body. The 
Jeffrey model is relatively simpler linear model 
using time derivatives instead of convective 
derivatives for example the Oldroyd-B model [21]. 
Kothandapani and Srinivas [22] studied the 
peristaltic transport of a Jeffery fluid under the 
effect of magnetic field in an asymmetric channel. 
More recently, Vajravelu et al., [23] studied the 
influence of heat transfer on peristaltic transport of 
a Jeffrey fluid in a vertical porous stratum.  

Motivated by these studies, in the present 
investigation we study the Peristaltic transport of 
magnetohydrodynamic Jeffrey fluid in a non 
uniform porous channel with the influence of slip, 
wall properties and heat transfer under the 
assumptions of long wavelength and low Reynolds 
number. The closed form of solution for the 
velocity, stream function and temperature are 
obtained. The effects of different physical 
parameters on the velocity, stream function and 
temperature obtained in the analysis are discussed 
through graphs.  

BASIC EQUATIONS 
The constitutive equations for an incompressible 

Jeffrey fluid are 

T p I s= − +              (1) 

( )2
11

s
µ γ λ γ

λ
= +

+
& &&                                    

  (2) 

where T and s  are Cauchy stress tensor and 
extra stress tensor respectively, p  is the pressure, 

I  is the identity tensor, 1λ is the ratio of relaxation 

to retardation times, 2λ is the retardation time, γ&  is 

shear rate and dots over the quantities indicate 
differentiation with respect to time. 

MATHEMATICAL FORMULATION 
We consider the motion of an incompressible 

electrically conducting Jeffrey fluid in a two-
dimensional non-uniform porous medium channel 
induced by sinusoidal waves propagating with 
constant speed ‘c’. The walls of the channel are 
assumed to be flexible and are taken as a 
stretched membrane. The wall deformation ( , )h x t

due to the infinite train of peristaltic waves is 
represented by 

( ) ( ) ( )2
, siny h x t d x a x ct

π
λ

= = + −  (3) 

where ( ) , 1d x d m x m′ ′= + << , a  is the 

amplitude, λ  is the wavelength, d is the mean half 

width of the channel, m′  is the dimensional non-
uniformity of the channel. 

Fig. 1 Physical Model 
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The equations governing the flow of an 

incompressible Jeffrey fluid in a porous medium 

under the influence of a magnetic field are 

0
u v

x y

∂ ∂+ =
∂ ∂

     (4) 

2
0

xyxx
SSu u u p

u v
t x y x x y

B u u
k

ρ

µσ

∂  ∂∂ ∂ ∂ ∂+ + = − + + ∂ ∂ ∂ ∂ ∂ ∂ 

− −
 (5) 

xy yyS Sv v v p
u v v

t x y y x y k

µρ
∂ ∂ ∂ ∂ ∂ ∂+ + = − + + − ∂ ∂ ∂ ∂ ∂ ∂ 

(6) 

and the energy equation [24] is 

2 2

2 2

xx yy xy

T T T T T
u v

t x y x y

u v u u
S S S

x y x y

ζρ κ   ∂ ∂ ∂ ∂ ∂+ + = +  ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂ ∂+ + + + ∂ ∂ ∂ ∂ 
      (7) 

where 

2
1

2
1

1xx

u
S u v

x y x

µ λ
λ
  ∂ ∂ ∂= + +  + ∂ ∂ ∂  

2
1

1
1xy

u v
S u v

x y y x

µ λ
λ
    ∂ ∂ ∂ ∂= + + +    + ∂ ∂ ∂ ∂    

2
1

2
1

1yy

v
S u v

x y y

µ λ
λ
  ∂ ∂ ∂= + +  + ∂ ∂ ∂  

Here ,u v are the velocity components along x 

and y directions respectively, ρ  is the density, µ  is 

the coefficient of viscosity of the fluid, p  is the 

pressure, σ  is the electrical conductivity of the 

fluid, 0B is the intensity of the magnetic field acting 

along the y-axis and the induced magnetic field is 
assumed to be negligible, k  is the permeability of 
the porous medium, ζ  is the specific heat at 

constant volume, υ  is the kinematic viscosity of 

the fluid, κ  is the thermal conductivity of the fluid 
and T  is the temperature of the fluid.   

The governing equations of motion of the flexible 
wall may be expressed as 

( ) 0L h p p∗ = −     (8) 

where L∗  is an operator, which is used to 
represent the motion of stretched membrane with 
viscosity damping forces such that  

2 2

12 2
L m C

x t t
τ∗ ∂ ∂ ∂= − + +

∂ ∂ ∂
   (9)    

Continuity of stress at  y h= ±  and using x

momentum equation yields 

( )

2
0

xyxx
SSp u u u

L h u v
x x x y t x y

B u u
k

ρ

µσ

∗ ∂  ∂∂ ∂ ∂ ∂ ∂= = + − + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

− −

      (10) 

( )1

2
at y sin

u
u h h d m x a x ct

y

π
λ

∂  ′= = ± = ± + + − ∂  
m

      (11) 

0T T=   on y h= −

1T T=   on  y h=     (12) 

Hereτ  is the elastic tension in the membrane, 

m is the mass per unit area, *C is the coefficient of 

viscous damping, 0p is the pressure on the outside 

surface of the wall due to the tension in the 

muscles and  1h  is the dimensional slip parameter.  

It is assumed that 0 0p =
We introduce the stream function ψ such that  

,u v
y x

ψ ψ∂ ∂= = −
∂ ∂

. 

and the following non-dimensional quantities are  

2
0

1 0

, , , ,

, , ,

x y ct
x y t

d cd

T Td h d
S S h p p

c T T d c

ψψ
λ λ

θ
µ λµ

′ ′ ′ ′= = = =

−′ ′ ′= = = =
−

(13) 
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The non-dimensional governing equations after 
dropping the primes, we get 

2 2 2

2

2 1

xx

xy

Sp
R

t y y x y x y x x

S
M

y y Da y

ψ ψ ψ ψ ψδ δ

ψ ψ
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∂ ∂ ∂+ − −
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       (14) 
2 2 2
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∂ ∂+ −
∂ ∂

       (15) 
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      (16)
where 
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 ∂ ∂× − ∂ ∂ 
2
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1

2
1
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d y x x y x y

δ δ λ ψ ψ ψ
λ
    − ∂ ∂ ∂ ∂ ∂= + −    + ∂ ∂ ∂ ∂ ∂ ∂    

( )
2

2
at y 1 sin 2h mx x t

y y

ψ ψβ ε π∂ ∂= = ± = ± + + −  ∂ ∂
m

      (17) 

( )

2 2 2

2

3 3 2
2

1 2 33 2

1

xyxx
SS

R
x y t y y x y x y

M E E E h
y Da y x x t x t

ψ ψ ψ ψ ψδ δ

ψ ψ

∂  ∂ ∂ ∂ ∂ ∂ ∂+ − + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂− − = + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
      (18) 

Further, it is assumed that the streamline value is 

zero at 0y = . i.e. ( )0 0ψ =    

 (19) 
0θ =  on y h= −  and 1θ =  on y h=  (20) 

where  

,
a d

d
ε δ

λ
= =  are geometric parameters, 

cd
R

ρ
µ

=  is the Reynolds number, 0M B d
σ
µ

= is 

the Hartmann number, 
3 3 3

1
1 2 33 3 2

, ,
d m cd Cd

E E E
c

τ
λ µ λ µ λ µ
− −= = =

are the non-dimensional elasticity parameters, 

Pr
ρνζ

κ
=  is the Prandtl number, 

( )
2

1 0

c
Ec

T Tζ
=

−

is the Eckert number, 
2

k
Da

d
=  is the Darcy 

number, 
m

m
d

λ ′
=  is the non-uniform parameter  

and β  is the Knudsen number (Slip parameter). 

EXACT ANALYTICAL SOLUTION
Under the assumptions of long wavelength (

1δ << ) and low Reynolds number, from equations 
(14)-(18), we get 

( )
3

2
3

1

1 1
0

1

p
M

x y y Da y

ψ ψ ψ
λ

∂ ∂ ∂ ∂= − + − −
∂ + ∂ ∂ ∂

      (21) 

0
p

y

∂= −
∂

     (22) 

Equation (22) implies ( )p p y≠
22 2

2 2
1

1
0

Pr 1

Ec

y y

θ ψ
λ
 ∂ ∂= +  ∂ + ∂ 

   (23) 

Elimination of pressure from equations (21) and 
(22), yields 

4 2
2

4 2
0N

y y

ψ ψ∂ ∂− =
∂ ∂

    (24) 
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where  ( ) 2
1

1
1N M

Da
λ  = + + 
 

   

 Equation (18) gives 

( )
3 3 3 2

2
1 2 33 3 2

N E E E h
y y x x t x t

ψ ψ  ∂ ∂ ∂ ∂ ∂− = + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
      (25) 

The closed form solution for stream function and 
velocity from equation (24) using the boundary 
conditions (17), (19) and (25) are given by 

( )

( )

3
3

1 22

8
cos2 ( ) sin 2 ( )

2

sinh

cosh sinh

E
E E x t x t

N

Ny
y

N Nh N Nh

επψ π π
π

β

 = − + − − −  

 
× − + 

      
      (26) 

( )

( )
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3

1 22

8
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E
u E E x t x t
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επ π π
π

β
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      (27) 

Substituting equation (26) into equation (23) 
subject to the boundary condition (20), we get the 
temperature as 

( )
( )

( )2 2 2 2 2
1

2

1

2 cosh 2 cosh 2 2

28(1 ) cosh sinh

BrL N y Ny Nh N h y h

hNh N Nh
θ

λ β

− + − +
= +

+ +
      (28) 

where 

( )
3

3
1 1 22

8
sin 2 ( ) cos 2 ( )

2

E
L x t E E x t

N

επ π π
π

 = − − + −  

and Br = PrEc ⋅  is the Brinkman number. 

The coefficient of heat transfer at the wall is given 

by x yZ h θ= ⋅     

( )( )
( )

( ) ( )22 2
12

1

2 cos 2
4 2 sinh 2 4 cosh sinh

(1 )8 cosh sinh

m x t Br
Z h L N y N Ny Nh N Nh

h Nh N Nh

πε π
β

λβ
+ −  

= − + + ++  
(29) 

RESULTS AND DISCUSSION 

The equation (27) gives the expression for the 
velocity in terms of y. Velocity profiles are plotted in 
figures from (2) to (8) to study the effects of 
different parameters such as the Jeffrey parameter 

1λ , the Darcy number Da, the slip parameter β , 

the amplitude ratio ε ,  the non-uniform parameter

m , the Hartmann number M, the wall tension 1E , 

the mass characterizing parameter 2E  and the 

damping nature of the wall  3E .  Fig. 2 is drawn to 

study the effect of 1λ  on the velocity distribution u. 

We observe that the increase in 1λ  decreases the 

velocity.  

Fig. 3 is plotted to study the effect of Da on the 
velocity. We observe that the velocity increases 
with increasing Da. Further, the permeability 
parameter causes to strengthen the fluid slip at the 
wall. Fig. 4 and Fig. 5 shows that an increase in β
and ε  results in the increase of velocity 
distribution. In Fig. 6 we find that the velocity for a 
divergent channel ( 0m > ) is higher compared to 

its value for a uniform channel ( 0m = ), whereas it 
is lower for a convergent channel ( 0m < ). From 
Fig. 7 we see that the velocity decreases with 
increase of M. From Fig. 8 we notice that the 
velocity increases with increasing E1 and E2 and it 
decreases with increasing E3.  

The equation (28) gives the expression for the 
temperature in terms of y. Temperature profiles are
plotted in figures from (9) to (16) to study the 



INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY & CREATIVE ENGINEERING (ISSN:2045-8711)          
                                                                                                                                           VOL.1 NO.11 NOVEMBER 2011 
�

15 

�

effects of the physical parameters of the problem. 

Fig. 9 is drawn to study the effect of 1λ  on the 

temperature distributionθ . It is observed that the 

temperature decreases with increasing 1λ . Figures 

10 and 11 are plotted to study the effect of Da and 
M on the temperature. We observe that the 
temperature increases with increasing Da and 
decreases with increasing M. Figures 12 and 13 
shows that the temperature decreases by 
increasing β  and it increases with increasingε . 

Fig. 14 illustrates the effects of m on the 
temperature distribution. We notice that the 
amplitude of the temperature is large in case of 
divergent channel compared with uniform and 
convergent channels. Fig.15 is plotted to study the 
effect of Brinkman number Br  on the temperature 
distribution. We notice that the temperature 
increases with an increase in Br . Fig. 16 shows 
that the temperature increases with increasing E1

and E2 and it decreases with increasing E3. 
The equation (29) gives the expression for the 

coefficient of heat transfer at the wall.  Figures from 
(17) to (23) are plotted to observe the variation of 
heat transfer coefficient at the walls for different 
values of the physical parameters of interest. We 
observe that nature of the heat transfer is in 
oscillatory behavior, which may be due to 

peristalsis. From figures 19, 22 and 23, the 
magnitude of heat transfer coefficient increases by 
increasing Da, Br, E1, E2 and E3 while from Figures 
17, 18, 20, 21 and 22, it decreases by increasing 

1, ,λ β M and m.  

TRAPPING PHENOMENA 
  

The effect of slip parameter on the streamline 
pattern is shown in Fig. 24. We observe that the 
size of the trapping bolus increases with increasing 
slip parameter. The streamlines for Jeffrey 

parameter 1λ  are shown in Fig. 25. It is observed 

that the size of trapping bolus decreases with 

increasing 1λ . The streamlines for uniform and non-

uniform channels are shown in Fig. 26. It is found 
that the size of the trapped bolus is large in the left 
hand of the convergent channel while it has 
opposite behavior for divergent channel. Further, 
the size of bolus is symmetric for uniform channel.
From Fig. 27 it can be seen that the volume of the 
trapped bolus decreases with increase of M. From 
Fig. 28 it is clear that the trapped bolus increases 
in size as Da increases. 
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Fig.2. The variation of u with y for different values of 1λ  for fixed   

E1=1, E2=0.5, E3=0.5, ε =0.1, β =0.0, M=2, Da=1, m=0. 

Fig.3. The variation of u with y for different values of Da for fixed 

E1=0.5, E2=0.5, E3=0.1,  ε =0.1, β =0.2, M=2, m=0.1, 1λ =1. 

Fig.4. The variation of u with y for different values of β  for fixed 

E1=1, E2=1, E3=0.5, ε =0.1, M=2, Da=2, m=0, 1λ =1. 

Fig. 5. The variation of u with y for different values of ε  for fixed    

E1=2, E2=0.7, E3=0.1, M=3, β =0.2, Da=2, m=0.1, 1λ =1. 
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Fig. 6. The variation of u with y for different values of m for fixed 

E1=0.8, E2=0.5, E3=0.5, ε=0.1, β =0.2, M=3, Da=2, 1λ =0.5. 

Fig.7. The variation of u with y for different values of M for fixed 

E1=2, E2=0.7, E3=0.1, ε=0.2, β =0.2, Da=2, m=0.1, 1λ =1. 

Fig.8. The variation of u with y for different values of  E1 , E2 and E3  

for fixed ε =0.1, β =0.2, M=2, Da=2, m=0, 1 1λ = . 

Fig.9. The variation of θ  with y for different values of 1λ  for fixed 

Br=3, E1=0.8, E2=0.5, E3=0.2, ε =0.1, β =0.1, M=2, Da=1, m=0.2. 
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Fig.10. The variation of θ  with y for different values of Da for fixed 

Br=4, E1=1, E2=0.5, E3=0.2, ε =0.1, M=2, m=0.2, β =0.1, 1λ =1. 

Fig.11 The variation of θ  with y for different values of M for fixed 

Br=2, E1=1, E2=0.8, E3=0.2, ε =0.1,Da=0.5, m=0.2, β =0.1, 1λ =0.5. 

Fig.12. The variation of θ  with y for different values of β  for fixed 

Br=3, E1=0.7, E2=0.5, E3=0.2, ε=0.2, M=3, Da=2, m=0.1, 1λ =0.5. 

Fig.13. The variation of θ  with y for different values of ε  for fixed 

Br=3, E1=0.8, E2=0.5, E3=0.3, 1λ =1, β =0.1, M=2, Da=1, m=0.2 
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Fig.14. The variation of θ  with y for different values of m for fixed 

Br=4, E1=0.8, E2=0.5, E3=0.2, ε =0.1, M=2, Da=1, β =0.1, 1λ =0.5. 

Fig.15.The variation of θ  with y for different values of Br for fixed 

E1=0.8, E2=0.6,E3=0.2, 1λ =1, β =0.1, M=3, Da=1, m=0.1, ε =0.1 

Fig.16. The variation of θ  with y for different values of E1, E2 and 

E3 for fixed Br=3, ε =0.1, β =0.1, M=2, Da=2, m=0.1, 1 1λ = . 

Fig. 17. The Coefficient of heat transfer Z with x for different values 

of 1λ  for fixed E1=0.5, E2=0.4, E3=0.1, ε =0.1, M=3, Br=2, Da=0.2, 

m=0.1, β =0.1. 
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Fig. 18. The variation of Z with x for different values of β  for fixed 

E1=0.5, E2=0.4, E3=0.1, ε=0.1, M=3, Br=2, Da=0.2, m=0.1, 1λ

=0.4 

Fig.19. The variation of Z with x for different values of Da for fixed 

E1=1.2, E2=0.1, E3=0.1, ε=0.1, M=5, Br=2, m=0.1, β =0.1, 1λ =0.2. 

 Fig. 20. The variation of Z with x for different values of M for fixed 

E1=0.5, E2=0.4, E3=0.1, ε =0.1, Br=2, Da=0.2, m=0.1, β =0.1, 1λ
=0.2. 

Fig.21. The variation of Z with x for different values of m for fixed 

E1=0.5,E2=0.4,E3=0.1, ε =0.1,Br=3,Da=0.2,M=0.1, β =0.1, 1λ =0.4.

Fig. 22. The variation of Z with x for different values of Br for fixed 

E1=0.8,E2=0.4,E3=0.2, ε=0.1,M=3,Da=0.2,m=0.2, β =0.1, 1λ =0.4. 

Fig. 23.  The variation of Z with x for different values of E1, E2, E3

for fixed M=3, Br=3, Da=0.2, m=0.2, β =0.1, 1λ =0.4. 
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(a) 

(b) 

(c) 

Fig. 24. Streamlines for (a) β =0, (b) β =0.1, (c) β =0.2, with 

E1=0.6, E2=0.4, E3=0.1, ε =0.1, m=0.1, M=4, Da=0.1, 1λ =1, t=0.1. 

(a) 

(b) 

(c) 

Fig. 25. Streamlines for (a) 1λ =0, (Results of Srinivas et al.[20])  

(b) 1λ =0.2, (c) 1λ =0.4, with E1=0.6, E2=0.4, E3=0.1, ε =0.2, 

m=0.1, M=4, Da=0.05, β =0.1, t=0.1. 
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(a) 

(b) 

(c) 

Fig. 26. Streamlines for (a) m=-0.3, (b) m=0.0, (c) m=0.3 with 

E1=0.5, E2=0.1, E3=0.2, ε =0.2, β =0, M=4, Da=0.1, 1λ =1, t=0.1. 

(a) 

(b) 

(c) 

Fig. 27. Streamlines for (a) M=0, (b) M=1, (c) M=2 with E1=0.8, 

E2=0.7, E3=0.2, ε =0.1, β =0.1, m=0.2, Da=0.1, 1λ =1, t=0.1. 
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(a) 

(b) 

(c) 

Fig. 28. Streamlines for (a) Da=0.01, (b) Da=0.1, (c) Da= ∞  with 

E1=0.6, E2=0.4, E3=0.1, ε =0.1, β =0.1, m=0.1, M=4, 1λ =1, t=0.1. 

CONCLUSION 
In this paper, we investigated the Influence of 
slip conditions, wall properties and heat transfer 
on MHD Peristaltic transport of a Jeffrey fluid in a 
non-uniform porous channel under the 
assumptions of long wavelength and low 
Reynolds number. The analytical expressions 
are obtained for the velocity, stream function and 
temperature. The main observations of this study 
are as follows: 

• The velocity profile decreases with an 
increase in Jeffrey parameter 1λ .  

• The temperature decreases with an 
increase in 1λ , β , M and E3 while it 
increases with increase in Da, ε , m, E1

and E2. 
•  As expected, the coefficient of heat 

transfer is oscillatory in nature.    
• The size of trapped bolus is smaller in 

Jeffrey fluid when compared with that of 
Newtonian fluid ( )1 0λ = . 

• As the Jeffrey parameter 1 0λ → , the 
results deduced are found to be in 
agreement with the corresponding ones of 
Srinivas et al. [20]. 
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