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Abstract — The use of mobile robots is being popular 
over the world mainly for autonomous explorations in 
hazardous/ toxic or unknown environments. This 
exploration will be more effective and efficient if the 
explorations in unknown environment can be aided with 
the learning from past experiences. Currently 
reinforcement learning is getting more acceptances for 
implementing learning in robots from the system-
environment interactions. This learning can be 
implemented using the concept of both single-agent and 
multiagent. This paper describes such a multiagent 
approach for implementing a type of reinforcement 
learning using a priority based behaviour-based 
architecture. This proposed methodology has been 
successfully tested in both indoor and outdoor 
environments.  
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I. INTRODUCTION

Recently the field of robotics, especially the mobile 
robotics has been identified as on of the most important 
areas of research due to its huge potential for 
autonomous explorations in different hazardous or toxic 
and unapproachable domains. These exploration 
domains extend from underwater exploration to factory 
automation, polar to planetary exploration, landmine 
detection to unknown environment mapping.  But for 
such explorations, the use of a mobile robot with 
classical control is possible if and only if the programmer 
or user has the prior knowledge about the environment. 
It is completely impossible to develop a mobile robot for 
explorations without knowing the environment 
beforehand. For such cases, the concept of learning 
from past experiences may provide a better strategy for 

explorations. The system will learn constantly from the 
interactions with the environment and modify the 
strategy of exploration accordingly. The most suitable 
learning in this direction is the Reinforcement learning, 
especially the Q-learning which uses delayed rewards 
[1]. The current research work proposes a new 
approach of autonomous exploration using multiagent 
Q-learning using behaviour-based robotics. This paper 
is organised as follows: after this introduction, related 
works and a few insights have been described. Then 
there are proposed methodology and experimental 
results and discussions followed by a conclusion. 

II. PREVIOUS WORKS

The field of reinforcement learning [1] has been 
started only few years ago. Reinforcement learning is 
being used for various multiagent systems to solve 
problems with numbers of robots/ systems. Lots of 
works have been done mainly theoretically and using 
simulation. The following paragraphs describe the work 
done in the field of MARL.  

Reference [2] uses the traditional Q-learning algorithm 
for multiagent system. The main interest is focused on 

the complex behavior of Q-learning with ε -greedy 

exploration in Prison-Dilemma-like games and the 
algorithm is able to achieve higher-than-Nash outcomes 
in an undiscovered chaotic system. Panait and Luke 
have wrote a state-of-the-art paper [3] discussing the co-
operative multiagent learning in broad survey. But it 
clearly mentions that Reinforcement Learning methods 
have only theoretical proof of convergence and such 
convergence assumption do not hold for some real-
world applications including many multi-agent system 
problems. The application of multi – agent for Q- 
learning was in [4] with the use of “Q Updates with 
Immediate Counterfactual Rewards-learning (QUICR – 
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learning) algorithm which is designed to improve both 
the convergence properties and performance of Q-
learning. This proposed modification tries to solve the 
existing credit assignment problem for a multiagent 
system. Reference [5] reviews the main benefits and 
challenges of multiagent Reinforcement Learning 
(MARL) as well as the different viewpoints on defining 
the MARL learning goal. There is also discussion of 
MARL algorithms for fully cooperative, fully competitive 
and mixed tasks. Issues on how autonomous agents 
learn to solve dynamic tasks online have been 
discussed. Behaviors of several MARL algorithms have 
been studied in simulation environments. Littman [6] 
described an approach to reinforcement learning in 
multiagent general-sum games in which learner is told to 
treat each other agent as either a friend or foe. This 
algorithm also provides strong convergence than Nash-
equilibrium-based learning rule. Case-Based 
Heuristically Accelerated Multiagent Reinforcement 
Learning (CB-HAMRL) has been proposed by Bianchi & 
de Màntaras [7]. This algorithm is based upon an 
emerging technique, Heuristic Accelerated 
Reinforcement Learning, in which RL methods are 
accelerated by making use of heuristic information. 
Empirical evaluation has been conducted in a simulator 
for the Littman’s robot soccer domain. Fujii et all [8] have 
used multilayered reinforcement learning scheme to 
select the appropriate collision avoidance behaviors so 
as to reduce the computational power and memory 
capacity. This helps to move numbers of robots using 
LOCISS (Locally Communicable Infrared Sensory 
System) safely in an environment full with large numbers 
of static obstacles. They have also used the algorithm 
on a real robot. This paper [9] aims to build a team of 
agents on long term basis where the decision making 
will be done using reinforcement learning. It uses robotic 
soccer as a multiagent Markov Decision Process and 
the analysis is made in own-developed ‘Karlsruhe 
Brainstormers’ simulator. Discussions on how optimality 
of behaviors of agents can be defined and the difficulties 
associated with developing algorithms to reach such 
optimality have been discussed. Kim and Vadakkepat 
[10] have used three micro-robot soccer teams in real 
field for analyzing the multiagent systems from robot 
soccer perspective. They have also reviewed the 
multiagent system and the learning issues in multiagent 
systems from robotic soccer perspective. The action 
selection [11] for the cooperation and coordination 
among agents is an important issue for multiagent 
systems. In dynamic and complex environments, the 
modular Q-learning is proposed for selecting the right 
action. The modular Q-learning consists of two different 
parts: different learning modules and the mediator 
module. The mediator module selects the right action 
based on the Q-values obtained from different learning 
modules. Littman [12] has described a Q-learning like 

algorithm for finding optimal policies for a two agent 
systems with diametrically opposite goals. It basically 
uses a reinforcement learning approach to solve two-
player-zero-sum games in which the max operator in the 
update step of a standard Q-learning algorithm is 
replaced by a minimax operator that can be evaluated 
by solving a linear program. Reference [13] describes a 
framework for using reinforcement learning on mobile 
robots. The main feature of the work is the use of 
example trajectories to bootstrap the value function 
approximation and splitting learning into two different 
phases. The first phase uses human or an example for 
the task and reinforcement learning system observes 
the states, actions and rewards by the robot. When the 
approximation of the value-function is done properly, the 
reinforcement learning in the second phase is in the 
control of the robot as in the standard Q-learning 
framework. Reference [14] is a review paper which 
focuses on the relation of multiagent reinforcement 
learning (MARL) with stochastic games. This paper has 
also discussed varieties of topics under MARL, ranging 
from proof of convergence of algorithms theoretically, 
develop algorithms of multiagent systems and simulate 
them, develop robots work to achieve certain tasks or 
develop social skills. The author has also hoped that 
combination of traditional RL solutions, applied MARL 
research, decision theory and game theory will open a 
new horizon of research. 

It may be concluded from the above discussions that 
three types of works are reported in literature, for both 
single-agent and multiagent reinforcement/ Q-learning. 

1) First type of papers [3, 5, 13, 14] is basically review 
type and discuss about the work done so far in the field. 
They do not propose any theory or describe any 
experiment.  

2) Second type of papers [2, 4, 6, 7, 9, 11, 12] is 
theoretical based and the proposed methodologies/ 
algorithms or any modifications of existing algorithms 
have been established by simulation. Further more such 
types of papers can be categorized into (a) purely 
analytical [2, 4, 6, 11, 12] and (b) simulation based 
robotics [7, 9]. 

3) Third type of papers [8, 10, 13] are experimental 
based i.e. the papers discuss the use of real robots in 
indoor/simulated environments, although work is very 
limited.  

Literature survey also reveals that till date no work 
has been carried out using robot for outdoor 
explorations using single agent/ multiagent 
reinforcement learning. The current work has tried to 
address this issue of autonomous outdoor exploration 
using multiagent Q-learning based on behavior-based 
robotics.         

III. A FEW INSIGHTS
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This current work is related mainly with behavior-
based robotics, reinforcement learning (especially Q-
learning), multiagent system. The following paragraphs 
will provide a brief idea about the above topics in 
nutshell. 

A. Behaviour-based Robotics 

The existing conventional/classical robotics has some 
control mechanism, which guides the end effectors to 
act accordingly, after it analyzes the inputs, obtained 
from various sensors and sends responses to those end 
effectors. The inputs from various sensors are used 
intermediately to symbolically represent the environment 
or action. On the basis of this environmental model
planning is done and then only commands are sent to 
the end effecters. But if the end effecters are directly 
coupled to those sensors and there is an intelligent 
agent to control the system individually, then it will be 
able to take decision itself. So, this is one kind of 
intelligence, often looked for in robots. This behavior is 
often called ‘Reactive’ in nature like the closing of eyes 
due to intense light in human beings. 

In behavior-based robotics four architectures are 
popular all over the world. They are Subsumption 
Architecture ([15], [16], [17], [18]), Action Selection 
Dynamics [19], Schema-based approach ([20], [21], [22], 
[23]) Process Description Language [24]. Out of which 
only the subsumption architecture has been used in the 
current research for implementation. Subsumption 
architecture is a layered behavior proposed by Brooks. 
These layers are associated with many simple 
behaviors. All these simple behaviors combine to form 
complex behaviors. The layers operate asynchronously. 

B. Reinforcement learning and Q-learning 

Learning is needed for forming a map/ function 
between the state (sensor information) and action 
(actuator commands). Supervised learning approaches 
need the model of good behaviour by a teacher. 
Reinforcement learning is one of the widely used online 
learning methods in robotics. It is sometimes called 
learning with the critic that gives scalar reward or 
punishment based on behaviors [25]. The robot learns 
during an action and also acts/ responds during the 
learning, which is neglected in supervised learning 
methods. The Reinforcement learning method used in 
most of earlier works is single agent based Q-learning 
[26, 27]. In single agent based Q-learning algorithm the 
external world is modelled as Markov Decision Process 
with discrete states and action spaces. It is flexible in 
this sense because it can learn from actions which it/ 
programmer doesn’t suggest. This ability is often called 
exploration – insensitivity. After each step an agent 

(single) observes the state vector ix , chooses and 

applies an action ia . The system passes in state 

1+ix and the agent receives a reinforcement ),( ii axr . 

The goal of the learning is to find a policy which 
maximizes the sum of the future reinforcements. For a 

given policy π, it is noted that )( ii xa π= , the chosen 

action. The evaluation function π, noted 
πV , is given by: 
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The discounting factor γ ∈ [0, 1] smaller than 1, 
ensures convergence of the sum. The optimal 
evaluation function V* (x), is defined as follows: 
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Where: xA = set of possible actions in the state x ; Pxy

= probability of passing from the state x to y by the 
action a; Q(x,y) represents the total reinforcement if the 
action a is selected in state x and if an optimal policy is 
chosen thereafter. It is called the quality function. 
Optimal policy can be found using dynamic 
programming if transition probabilities Pxy(a) and the 
reinforcement law r(x, a) are known. Instead of using 
evaluation function, Watkins proposed to estimate the 
function Q* by the function: 

(x, a) � Q(x, a) which is updated with each transition 
by: 

1
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Here β is a learning parameter which must tend 
towards 0 when t tends towards the infinite.  
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Fig. 1. System- Environment Interaction Model for Single agent Q-
learning 

C. Multiagent Systems 

Agents are the most discussed issue for present-day 
advanced robotics. However this concept of agents has 
evolved from multi-agent system (MAS) [29] which in 
turn is a part of Distributed Artificial Intelligence (DAI). 
The (software) agent is an entity which performs 
continuously and autonomously particular task(s) 
assigned to it in an environment (populated by other 
agents) for achieving the desired goal. Multi-agent
system is composed of multiple interactive intelligent 
agents that collectively complete their own individual 
goals to achieve the overall goal. Multi-agent system 
(MAS) is very useful to accomplish a complex task 
easily and fast. In the most general case, agents will be 
acting on behalf of users with different goals and 
motivations. To successfully interact, they will require 
the ability to cooperate, coordinate, and negotiate with 
each other, much as people do.  

IV. THE PROPOSED METHODOLOGY

The proposed methodology uses the concept of 
gradual learning on a single agent and then a multiagent 
system. However the major work has been done on the 
multiagent system.  

A. Gradual learning 

The term “learning” straight forward refers mainly to 
human learning. Many researchers have proposed 
different learning models to describe human learning. It 
has also been mentioned that human learning relies on 
the past experiences. For example, the learning of day -
5 depends on the learning of day-4. One cannot learn 
the knowledge of day-5, without the knowledge of day-4 
or day-2. The knowledge of a human being is refined 
gradually depending up on his/ her past experience, 
interaction with the environment, environmental 
conditions. Another important inference can be drawn 

from the theories about human learning is that learning 
is in terms what he/she already knows [30]. If one 
doesn’t understand what does ‘capital’ or ‘country’ 
means, he/she cannot understand that “‘A’ is the capital 
of the country ‘B’”. So there is one popularly used 
method of learning which is very much gradual/ 
cumulative rather than sudden. For example a child 
starts learning the alphabets; if first day he/ she starts 
learning from ‘A’ and stops at ‘D’, next day he/ she will 
start from ‘E’, not again from ‘A’. This saves time and 
increases the efficiency of learning. 

B. Human-like Gradual Multiagent Q-learning 

This type of gradual learning can also be implemented 
for robot learning. In that case, the past experience of 
the robot can be referred for new or advanced learning. 
Q-learning, a well-known and most suitable RL for 
robots uses only a randomly generated Q-table for each 
new run. Instead of new Q-table each time, the past Q-
table can be referred as initial table for second run 
onwards. 

TABLE I

STEPS OF THE HUMAQ ALGORITHM FOR SINGLE AGENT

First run

I. Generate Q-table with random values 

Repeat (forever) 

{ 

1. Read the sensor data 
2. Decide the state (xi) of the robot 
3. Select the action (a) according to the state and Q-

values of the corresponding action 
4. Execute the selected action 
5. Read the sensor data 
6. Compute the reward/ punishment & reinforce the state 

– action pairs(s)
7. Update Q-table as final table
          }

Second run onwards

II. Initialization: Initial Q-table = Final Q-table

Repeat (forever) 

{ 

1. Read the sensor data 
2. Decide the state (xi) of the robot 
3. Select the action (a) according to the state and Q-

values of the corresponding action 
4. Execute the selected action 
5. Read the sensor data 
6. Compute the reward/ punishment & reinforce the 

state – action pairs(s)
7. Update Q-table as final table
            }

In most cases, a single-agent is performing all the 
interactions between the system and environment 
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necessary for Q-learning [refer fig. 1]. But for complex 
situations, (say a robot with large nos. of sensors) the 
single-agent may not perform well. Such complex cases 
can be addressed by multi-agent architecture. In such 
cases nos. of agents individually and independently 
works to achieve own goal, which is a sub-part of the 
overall goal. When all the agents individually achieve 
their own goals, the main goal is achieved. Here 
different reactive agents have been used and the Q-
tables for different agents are generated using gradual 
learning, except the first run.  

The initial concept of Q-learning was proposed using 
single-agent. But later on with the advancement of 
robotics, multi-agent system has been developed for 
complex situations using several sensors. Different 
agents are responsible for different sensors. 

Fig. 2. Proposed Generalized Multi-agent Q-learning for a System. The 
system is divided in two main parts: different Agents and the Co- 

ordinator. System interacts with the environment with the help of Co-
ordinator. 

Human-like Gradual Multi Agent Q-learning is the 
proposed new approach of Q-learning for multi-agent 
systems. The human-like gradual learning has already 
been explained in the above paragraphs. The human-
like gradual Q-learning for various multi-agent systems 
will be discussed in the following paragraphs. This is 
simpler than any other multi-agent Q-learning. As shown 
in fig. 2, the system interacts with the environment with 
the help of a ‘Co-ordinator’. It is one the main parts of 
HuMAQ. 

The system has ‘N’ numbers of agents responsible for 
different states generated by the sensors and by some 
internal states. For a simple system, each agent can 
take care of 2 states of the robot. For a more complex 
system, each agent can take care of n states. On the 
basis of the different states, each agent chooses 
different actions and sends to the Co-ordinator. This co-

ordinator arranges the agents according to the priority 
as shown in fig. 3. For example if there are four agents; 
hunger, goal-seeking, obstacle-avoidance and line-
following; they can be arranged as hunger, obstacle-
avoidance, goal-seeking and line-following according to 
the priority. Hunger should have the highest priority, as 
no system can move or work without energy. 

Fig. 3. The Proposed Generalized Co-ordinator for HuMAQ. The main 
part of the co-ordinator is the modifier. It modifies the actions for 

different agents depending upon the priority and distributes the reward 
accordingly 

Fig. 4. Subsumption Architecture is a layered based control system for 
robots as proposed by Rodney Brooks. The top layers have higher 

priority over the bottom layers. 

The next priority is of the obstacle-avoidance agent, 
as obstacle avoidance is the second most important 
issue after the power supply for real time explorations. 
The last two agents according to the priority are goal-
seeking and line-following respectively, as goal-seeking 
is the main objective of any autonomous field 
exploration rather than the line- following. This concept 
of priority is based on Brook’s Subsumption 
Architecture.  As shown in fig. 4, this is a layer-based 
control for robots and distributed and parallel methods to 
connect sensors and actuators in robots. Each parallel 
layer (layer 2, layer 1 and layer 0) is made up of simple 
processors, called Augmented Finite State Machines 
(FSM). The most important aspects of FSMs are that 
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outputs are simple function of inputs and local variables; 
inputs can be suppressed and outputs can be 
inhibitated. 

Co-ordinator has an important sub-part known as 
modifier. The modifier refines the actions proposed by 
different agents depending upon their priorities. For 
example, if the goal-seeking agent has directed the 
robot to move in forward direction, but the obstacle-
avoidance agent has detected obstacle in the front, the 
modifier searches the second point from where the goal 
is nearer and refines the action as move forward in left 
or move forward in right. The modifier tries to find out a 
common intersecting area (as shown in fig. 5) where the 
states from most of the different agents are available 
and then refines the action from the descending list of 
states from that common space accordingly. It is not 
mandatory that all the states from all the agents are 
present as in any instance of time all the agents may not 
be active. With the increase in number of agents, the 
complexity of the co-ordinator and modifier also 
increases.  

Fig. 5. The common shared area by all the agents is chosen by the 
modifier for consideration. 

The refined action is performed by the actuators and 
the obtained reward is again sent to the modifier to 
distribute them as per the priority of the agents only to 
those, which were active for obtaining the particular 
reward. So, instead of a single reward as in the case of 
Q-learning, here a distributed and gradually reducing 
weightage system has been used. Such a variable 
weightage system has been used to accommodate the 
difference in priority of the agents. For example, if there 

are four agents and the total reward obtained is R  for 
any instance of time, when all the four agents were 
responsible for a refined action, it can be distributed as 
mentioned in eqn. 4 below.  

44332211 RRRRR ωωωω +++=                 (4) 

Where 4321 ωωωω >>> ; 14321 =+++ ωωωω ;

1ω , 2ω , 3ω , 4ω are the distributed weightage for 

rewards for agent 1 (highest priority), agent 2, agent 3 

and agent 4 (low priority) respectively. 1R , 2R , 

3R and 4R are the individual rewards for agent 1, agent 

2, agent 3 and agent 4 respectively obtained directly due 
to system-environment interactions. With these separate 

rewards )4,3,2,1( ∈iRiiω , the separate Q-tables for 

different agents update themselves gradually. After a 
long run in any field exploration, if the system needs to 
be recharged or powered off for any reason, the final Q-
table at that instance is stored and will be used as initial 
table for next run onwards. More details about this have 
been given in the following example. 

C. Simplified Methodology for Field Exploration 

It has been noted that even if only a few sensors are 
used, the numbers of possible states become large. In 
an indoor exploration (goal seeking) with the help of light 
sensor, ultrasonic sensor, compass and battery-level 
detector (four different agents), nos. of states possible 
are in the order of 10

8
or more. It may be very difficult to 

implement such a system in real time robots as it will 
need huge computational power and complexity. To 
simplify this model only three very necessary sensors 
and three related agents have been used in real 
experiments. Also several assumptions have been made 
and as a result the total numbers of states have reduced 
to very minimum (in the order of 10

3
). 

  

Fig. 6. (a) The numbering of the sectors is done in the clockwise 
direction with reference to the front direction of the robot. The numbers 

of the sectors are considered for denoting the brightness of the 
environment around the robot. (b) The surroundings of the robot can 
be differentiated as near, near-far, far, farther and farthest depending 

upon its distance. All these circles can again be divided into eight 
sectors. Obstacles with different colours and shapes have been found 

at different distances and different sectors. 

Sensors are used to get the complete information of 
all the disturbances of the environment around a robotic 
system. In ideal case any sensor should have 360° 
views of the environment. Here the sensors have been 
mounted on a rotating head to take the readings around 
the robot (360° view). Instead of continuous readin g a 
sector wise reading is preferred. Continuous reading will 
show gradual change in the reading of light; where as 
the sector wise reading will depict sudden change from 
sector to sector. Smaller division will lead to more 
numbers of sectors and consequently more numbers of 
sectors will show only a little difference in analogue 
values of the readings and the sensor will take longer 
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time to read the data. But in some cases (in a dynamic 
environment), this delay may cause a problem. Similarly, 
for a few divisions, only a numbers of sectors with larger 
area will be generated and such large sectors will make 
a huge deviation in the trajectory of the robot and this 
may lead the robot to wrong direction and the time for 
error correction will make a cumulative effect on the 
mission time.  

For a goal-directed field exploration, the minimum 
sensors to be used are (1) for monitoring the voltage of 
the battery (2) for detecting the goal (3) for avoiding the 
obstacles. In this case three different agents have been 
used for describing the states of these sensors as 
Hunger, Goal-seeking and Obstacle-avoidance 
respectively for a successful exploration. 

1)  Agent – Hunger: As already described, the agent 
hunger is responsible for the monitoring the battery-
voltage level and denotes its sub-states as above the 
threshold voltage (can be denoted by ‘0’) or below the 
threshold voltage (‘1’). The probable actions for this 
agent shut-down the system and do not shut-down. 

2)  Agent – Light-seeking: Considering all the aspects 
of both smaller and larger sectors, here the (imaginary) 
circle around the robot is divided into 8 equal sectors 
each making an angle of 45° at the centre. The ligh t 
sensor takes reading only on boundary line (45° apa rt 
from each other) and differentiates the sectors according 
to the intensity of the light and the boundary line of the 
sectors are assigned values from 0 to 7 in the clockwise 
direction with reference to the front direction of the robot 
(shown with red coloured arrow line in fig. 6(a)). In 
actual case the arrangements of bright and dark sectors 
do not occur regularly, there may be repetition and 
irregular arrangements.

From the above convention, it is clear that the 
brightest sector can have 8 values (0 to 7). For example, 
say the brightest zone is the first sector i.e. with value 0. 
For this single value, the next brighter zone can have 8 
values. So, for these two sectors together, for the single 
value of the first sector, 1×8 possible combinations can 
occur. Again the next bright sector can have 8 values. 
For these three sectors 1×8×8 (= 8

2
=64) values are 

possible, for a single value of the first sector. For all the8 
values of the first sector, there can be 8×8×8 (=8

3
) 

combinations for the three sectors. For 8 sectors total 8
8

numbers of combinations are possible. This refers to 
16777216 numbers of possible states of the robot. But 
such a large combination of states will lead to 
computational complexity and require huge memory 
power and operational time. 

TABLE II 
STATE TABLE FOR THE GOAL-SEEKING AGENT

No. of the 

maximum 

intensity 

No. of the 

second 

maximum 

No. of the 

third 

maximum 

Repetition 

grid grid grid 

Percept ID 1 Percept ID 2 
Percept ID 

3 

Percept ID 

4 

0 1 2 0 

To overcome the above difficulties, instead of 
considering all the 8 sectors, three sectors with 
consecutive maximum brightness values are 
considered. So, total 8

3
 (8×8×8) i.e. 512 numbers of 

states are possible instead of 8
8
. As the goal of the 

exploration is to search the brightest part of the 
environment, constant movement is essential for the 
robot. It may also happen that the robot is stationary and 
as a result the reading of a particular sector is constant 
for the last few couple of minutes. This is defined as 
another percept and it can be denoted as ‘whether the 
system has five repeated readings or not’. If it is ‘Yes’, 
the value 1 is assigned and for ‘No’, 0 is assigned. So, in 
total 1024 (512×2) numbers of states are possible. The 
above table (table II) shows that the state of the robot is 
denoted by a 4 digit number. Here 4 nos. of percepts are 
considered having ID 1, 2, 3, 4. 

This entire phenomenon is taken care of by the goal-
seeking agent (agent 1). The detail schematic diagram 
for only the goal-seeking agent is given in fig. 7.

Fig. 7. The detail schematic diagram for the operation of the light-
seeking agent (agent 1) shows that not only the system (robot) and the 

environment are considered, but also the memory of the robot is 
associated for determining the states. 

The actions for this agent are given in table III. These 
actions are in terms of rotation of the robot along the 
sectors. As eight sectors have been considered for 
measuring the sensor values of the environment, there 
should also be eight rotations starting from 0° to 315° in 
steps of 45° as shown in table III. If the brightes t zone is 
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sector 0, (i.e. along the forward direction of the robot at 
current position) the robot will not rotate. But if the 
brightest zone is sector 7, the robot will rotate through 
an angle of 315° (i.e. 7 × 45°) clockwise. The goal -
seeking agent chooses the action from the Q-table and 
sends to the co-ordinator. 

TABLE III 
ACTION TABLE FOR GOAL-SEEKING AGENT

Actions 
Action ID 

No rotation 0 

Clockwise rotation through 45° 1 

Clockwise rotation through 90° 2 

Clockwise rotation through 135° 3 

Clockwise rotation through 180° 4 

Clockwise rotation through 225° 5 

Clockwise rotation through 270° 6 

Clockwise rotation through 315° 7 

1)  Agent – Obstacle-avoidance: The ultrasonic sensor 
detects the obstacles and measures the distance. The 
obstacles only at the plane of the ultrasonic sensor are 
detected by the sensor. The surroundings of the robot 
can be referred as near, near-far, far, farther and 
farthest according to the distance and they can be 
denoted by circles (from 0 to 4) as shown in fig. 6(b). 
The approximate radii for these circles are given in table 
IV. 

TABLE IV
DISTANCE TABLE FOR LOCATING OBSTACLES FOR OBSTACLE-AVOIDANCE 

AGENT

Relative 

position 
Near 

Near 

– far 
Far Farther Farthest 

Approximate 

distance 

(cm) 

≤ 50 
50 - 

100 

100 

- 

150 

150 - 

200 
> 200 

Number of 

the zone 
0 1 2 3 4 

Each individual circle surrounding the robot (circles 
around it) is again divided in 8 sectors (A to H). Total 
nos. of states for obstacles-avoiding agent can be found 
out in the similar manner as done in the case of goal-
seeking agent. Suppose an obstacle is detected inside 
the first circle (no. 0) and in the second sector (no. B) as 
shown by a red square in fig. 6(b). So, for this single 

obstacle, there may be 5 possibilities (as there are only 
5 circles) of an obstacle to be present in the next sectors 
i.e. first, second, third and fourth circle. This is to be 
noted that it is immaterial whether more objects are 
detected behind the first obstacle in the same sector. In 
such cases only the first obstacle (nearest to the centre 
of the circles) is considered. So together, 1 × 5 
combinations are possible. Again, if the third sector is 
considered, total 1×5×5 (or 5

2
) combinations can be 

obtained. For all the sectors of the different circles, in 
total 5

8
 i.e. 390625 combinations (i.e. states) are 

available. But as in the earlier case, it is not possible to 
handle such large amount of data which require a lot of 
computational power, memory space and processing 
time.  

For the simplicity, rather only those sectors of the 
circles are considered, where the brightness is 
maximum, second maximum and third maximum. Thus 
the total nos. of states reduces to 5

3
 i.e. 125 nos. 

instead of 5
8
 combinations. The robot should also move 

continuously to avoid trap. So, to avoid traps repeated 
readings of the robots should be avoided. This is 
denoted by another state: ‘Repeated reading?’- Yes or 
No which is referred by 1 and 0. So, here 2 
combinations are possible and in total 125 × 2 (=250) 
nos. states can be obtained. In this case the state table 
will also consist of 4 digits as given in table V. The state 
IDs along with their description is given in the table 
below. 

The Avoid-obstacle agent locates the obstacles and 
finds out their position. This agent works independently 
with out any intervention by other agents. The action for 
this agent is given in table VI. Here all the three agents 
work independently and separately. But they are sharing 
information as the goal-seeking agent passes the 
information of three maximum brightness zones to the 
obstacle-avoidance agent. 

Table V 

The state Table for the Obstacle-avoidance Agent 

  Obstacle 

in the 

Maximum 

Intense 

Zone 

Obstacle in 

the Second 

Maximum 

Intense Zone 

Obstacle in 

the Third 

Maximum 

Intense Zone 

Repetition 

Percept 

ID 1 
Percept ID 2 Percept ID 3 

Percept 

ID 4 

0 1 2 0 
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Table VI 

Action Table for Obstacle-avoidance Agent 

1)  Co-ordinator and the Modifier: All the sub-states and 
the recommended actions for different agents are 
forwarded to co-ordinator for selecting the refined action. 
The modifier chooses the refined actions against the 
above simplified states from the initial or updated Q-
table based on the Q-values.

All the three agents are sending data (sub-states and 
action) simultaneously to the Co-ordinator. As the agent 
Hunger, is of highest priority, the co-ordinator sorts out 
this agent first and forward its recommended action and 
sub-state to the modifier. If the recommended action is 
‘shut-down system’, the same is passed for action. No 
other command by other agents will be considered. But 
if the action is ‘do not shut down’, the modifier looks for 
the next priority agent. The next priority agent is the 
Goal-seeking agent. The agent gathers the data 
(brightness) from the surroundings and arranges only 
three of them (numbers of sectors with different 
brightness) in descending order starting with the 
maximum. Suppose the sub-states for such a case is ‘2 
– 3 – 1’. The action related to the maximum brightness 
is rotation through an angle (= number of the sector × 
45°) in the clockwise direction (as the reading has  been 
taken in a step of 45° in the clockwise direction).  Here it 
will be rotation through 90° (2 × 45°). The sub-sta tes 
and the action are passed to modifier for further action. 
Obstacle-avoidance agent is the agent with last priority. 
This agent gathers the data about the presence of 
obstacles in the sectors and circles (1st, 2nd, 3rd and 

4th) and compares them with the sectors of first, second 
and third maximum brightness. Then the agent passes 
the sub-states and action to the Co-ordinator for 
refinement. Here for 5 different zones (within 1st , 2nd , 
3rd and 4th circle and outside 4th circle) and 3 different 
brightness regions, total 215 combinations are possible 
for presence (‘1’) or absence (‘0’) of obstacles. The 
modifier chooses the action according to following rules.  

Rule - I: If there is an obstacle within the first circle of 
the brightest zone, go to second bright zone. If there is 
an obstacle also within the first circle of the second 
bright zone, go to the third bright zone. If there is an 
obstacle with in the first circle of the third bright zone, 
the system may stand still. 

Rule - II: If the obstacle is not within the first circle, but 
within second or third or fourth circle of the considered 
bright zone, the system will use modified speed as given 
in table VI. In this regard a point may be noted that if 
there is an obstacle within the first circle of the brightest 
zone; another obstacle within the second circle (more 
specifically between first and second circle) of the 
second bright zone and no obstacle in the third bright 
zone, the modifier will make the system move along the 
second bright zone with modified speed.    

The reward obtained due to the past action is updated 
in the Q-table for respective agents. Here two cases 
may happen. 

Case-I: When the agent hunger detects that the 
voltage level is below the predefined threshold limit, the 
reward will be totally updated to the Q-table of the agent 
hunger, as this agent solely defines the action. 

Case-II: When the agent hunger detects that the 
voltage level is above the predefined threshold limit, the 
reward is distributed with reducing weightage as 
mentioned in equation 2.  

Here as only three agents are active, goal-seeking, 
obstacle-avoidance and direction-correction, the 
rewards are distributed with the weightages 0.6, 0.3 
and0.1 respectively. The reward for goal-seeking is 
calculated as:  

]
1

)max()max[(
−
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i
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i
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1

)
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(
−i

L = maximum light value of the 

previous state )1( −i in the direction of motion of the 

robot and 
i

L )
max

( = maximum light value in the 

)(i current state for that same direction. Similar policy is 

also adapted for obstacle-avoidance agent as 
mentioned in eqn. 3(b).  
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34 67 84 100 117 
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ID 
0 1 2 3 4 
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………..…….…… (3b)
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which the robot has moved to reach the )(i current 

state. 
For no repetition in any of the above mentioned 

agents, a positive scalar reward of magnitude ‘10’ or 
‘100’ and for repetition a negative reward (i.e. 
punishment) of ‘-20’ or ‘-200’ have been used. The 
punishment should be always higher than the reward so 
as to stop selecting any wrong policy. The high value of 
punishment will completely abandon the associated 
action. These rewards multiplied with the weightage 
factors are updated in the respective Q-tables of 
different agents. 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A.Experiment 

Different experiments in the field of Behavior-based 
robotics, Reinforcement learning has been carried out in 
different environments using different robotic systems. 
Initially it was a challenge to identify the right Behavior-
based architecture for implementation. For this purpose 
two most popular architectures (Subsumption 
architecture and Motor-schema theory) have been 
tested in simulated environment. Using the identified 
architecture, the next series of experiments have been 
carried out in simulated environment (fig 8(a)), indoor 
environment (fig 8(b)) and different outdoor terrains (fig 
8(c)-(f)). Most of these experiments include only three 
agents: hunger, goal-seeking and the obstacle-
avoidance using the battery-level detector, light sensor 
and ultrasonic sensor respectively. The data of the 
experiments have been saved on the robot itself and 
later downloaded for further processing.   

The experiments with HuMAQ are carried out in five 
trial runs on different outdoor terrains each with five 
sets. The first set of each trial run uses a randomly 
initialized Q-table and from second run onwards, final 
updated Q-table of the previous set is used as the initial 
Q-table of the next set. 

B.Experimental Systems 

In these sets of experiments four different sets of 
robots have been used. Initially the experiments have 
been carried out with indigenously developed three 
different robots: ARBIB (Autonomous Robot Based on 
Intelligent Behaviors) – I, II and III. The testing for 
HuMAQ has been mostly carried out on LEGO 
Mindstorm NXT due to its simple and perfect analog 
sensors. The above figures [9(a) – (d)] show the 
different robots used during various experiments. 

(a) (b) 

(c) (d) 

(e) (f) 

Fig. 8. Environments where different experiments have been carried 
out (a) Simulated environment (b) Indoor environment (c) Outdoor 

terrain – Plain grassland (d) Outdoor terrain – Loose sand (e) Outdoor 
terrain – Laterite tableland (f) Outdoor terrain- Roof of the laboratory 

during night 
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C.Results and Discussions 

After the successful completion of the exploration in 
indoor environment using HuMAQ, the data are 
downloaded for analysis. The first set (Set A) of the trial 
run is done with a randomly generated Q-table. In this 
set, 54 nos. of updates are performed to reach the goal. 
The second set also took 54 nos. of updates to reach its 
goal, but started with the final table of set A as initial 
table. The nos. of updates for other sets of the same trial 
run and the approximate time to reach the goal has 
been given in table VII. When these numbers of updates 
(or the approximated time) are plotted, produces a graph 
as shown in fig. 10(a) which is gradually decaying down. 
This gradual decrease in nos. of updates or 
approximated time indicates that learning is occurring in 
real time. If the experiment is carried out for few more 
sets, the curve will become flat. It means that the 
learning has reaches the optimality.  

Table VIII and IX show the cumulative change of Q-
values in the Q-table with respect to its initial values for 
goal-seeking (using light sensor) and obstacle-
avoidance (using ultrasonic sensor) agents respectively. 
The different between two consecutive columns (i.e. 
sets) gives the particular change of the Q-values 
occurred in the later. If these particular values for 
different columns (sets) are compared, it will also show 
a decreasing tendency and this proves the efficiency of 
the learning. 

Table VII 

Numbers of Updates and Approximate Time Required (Sec) for 

Reaching the Goal in an Indoor Environment using HuMAQ 

Table VIII 

Cumulative Change of Q-values (compared to intial value) in the Q-

table for the Goal-seeking Agent (Light sensor) in Indoor Environment  

Table IX 

Cumulative Change of Q-values (compared to intial value) in the Q-

table for the Obstacle-avoidance Agent (Ultrasonic sensor) in Indoor 

Environment  

Items Set A Set B Set C Set D Set E 

Value 
Increased 

16 31 36 41 
44 

Value 
Decreased 

9 9 9 9 
9 

Total Change 25 40 45 50 53 
Table X 

Durations (in sec) for reaching the goal  

Types of 
Terrains 

Set 
A 

Set 
B 

Set 
C 

Set 
D 

Set 
E 

Plain Grass land 1382 1203 784 904 781 

Sandy river bank 1323 1081 1022 904 900 

Hard concrete 
floor 

1201 1025 845 802 761 

Laterite table land 902 783 722 601 600 

Hard concrete 
floor at night

1261 1203 904 843 842 

Table XI 

Cumulative Change of Q-values (compared to intial value) of the 

various state-action pairs for the Goal-seeking Agent (Light sensor)��

Types of 
Terrains 

Items Set 
A 

Set 
B 

Set 
C 

Set 
D 

Set 
E 

Plain 
Grass 
land 

Value 
Increased 

46 56 62 65 
66 

Value 
Decreased 

19 19 19 19 
19 

Total 
Change 

65 75 81 84 
85 

Sandy 
river bank 

Value 
Increased 

35 46 50 52 
54 

Value 
Decreased 

20 20 20 20 
20 

Total 
Change 

55 66 70 72 
74 

Hard 
concrete 

floor 

Value 
Increased

43 52 60 70 
79 

Value 
Decreased 

19 19 19 19 
19 

Total 
Change 

62 71 79 89 
98

Laterite 
table land 

Value 
Increased 

30 36 42 47 
48 

Value 
Decreased 

26 26 26 26 
26 

Total 
Change

56 62 68 73 
74 

Hard 
concrete 
floor at 
night 

Value 
Increased 

47 57 59 64 
66 

Value 
Decreased 

17 17 17 17 
17 

Total 64 74 76 81 83 

 Set A Set B Set C Set D Set E 

Nos. of 
Updates 

57 56 48 38 34 

Time 
Required 

(Sec) 
1141 1122 964 762 685 

Items Set A Set B Set C Set D Set E 

Value 
Increased 

42 60 71 78 
82 

Value 
Decreased 

19 19 19 19 
19 

Total Change 61 79 90 97 101
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Types of 
Terrains 

Items Set 
A 

Set 
B 

Set 
C 

Set 
D 

Set 
E 

Change 
Table XII 

Cumulative Change of Q-values (compared to intial value) of the 

various state-action pairs for the Obstacle-avoidance Agent (Ultrasonic 

sensor)  

Types of 
Terrains 

Items Set 
A 

Set 
B 

Set 
C 

Set 
D 

Set 
E 

Plain 
Grass 
land 

Value 
Increased 

18 26 30 31 33 

Value 
Decreased 

6 6 6 6 
6 

Total 
Change 

24 32 36 37 
39 

Sandy 
river bank 

Value 
Increased 

15 24 28 31 
33 

Value 
Decreased

5 5 5 5 
5 

Total 
Change 

20 29 33 36 
38 

Hard 
concrete 

floor 

Value 
Increased 

13 21 25 26 
28 

Value 
Decreased 

2 2 2 2 
2 

Total 
Change 

15 23 27 28 
30 

Laterite 
table land 

Value 
Increased

11 13 15 19 
22 

Value 
Decreased 

5 5 5 5 
5 

Total 
Change 

16 18 20 24 
27 

Hard 
concrete 
floor at 
night 

Value 
Increased 

12 17 19 21 
22 

Value 
Decreased 

9 9 9 9 
9 

Total 
Change 

21 26 28 30 
31 

Fig. 10(a). The nos. of updates to reach the goal Vs. nos. of trial runs 
shows a gradually reducing nature which in fact supports the actual 

learning using HuMAQ in indoor environment.  

Fig. 10(b). The time to reach the goal Vs. run nos. shows a good 
acceptability of HuMAQ for autonomous exploration in outdoor 
terrains. As expected, the initial time was higher than the later. 

In similar manner, the different data recorded during 
the outdoor field explorations and the extracted data/ 
information generated thereafter have been given in the 
above tables/ sections. The durations for reaching the 
goals (calculated thereafter) different sets of the different 
trial runs have been given in table X. 

The cumulative change of Q-values in the Q-table 
with reference to the initial values for both goal-seeking 
and obstacle-avoidance agents have been given in table 
XI and XII respectively. 

One important issue for any learning algorithm/ theory 
is that if learning is applied in the same field for same 
objectives repeatedly, the learning time/objective 
fulfilment time should reduce. This point has also been 
fulfilled in the case of application of HuMAQ for 
autonomous explorations. It is clear from table X that the 
time for reaching the goal from the same starting point, 
are gradually reducing in nature. For example, if the 
experiment over the plain grass land is considered, the 
initial nos. of updates to reach the goal is 66 with 
randomly generated Q-table and the final (set E) nos. of 
updates to reach the goal is 45 using the concept of 
gradual learning. For all other intermediate sets, the 
update-counts are lying between 66 and 45. 
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Fig. 11. The individual change of Q-values of the goal – seeking agent 
(light sensor) for different sets of the different trial runs proves the 

convergence of the learning. 

D. Performance of the Learning Algorithm 

As described in [25], ‘optimality is usually an 
asymptotic result and so convergence speed is an ill-
defined measure’. As optimality may not be well defined, 
more practical measure is speed of convergence to near 
– optimality. This indicates that someone should define 
how near the optimality is sufficient. The speed of 
convergence or the rate of convergence can be defined 

[31] as follows. If a sequence of numbers (
1

a ,
2

a ,
3

a , 

……….. 
k

a  ) is considered and this sequence 

converges to the number L, it can be said that this 
sequence converges linearly to L, if there exists a 

number, µ =(0, 1) such that 

µ=

−

−
+

∞→ L
k

a

L
k

a

k

1
lim

This µ  is known as the speed or rate of 

convergence. If µ =0, it is said the sequence converges 

linearly and if µ =1, the sequence converges sub-

linearly.  
If the updates of the trial runs for explorations in 

outdoor environment are considered as sequence of 
numbers, for example, for the first trial run (experiment 
on plain grass land) the updates are 69 (set A), 60 (set 
B), 39 (set C), 45 (set D), 39 (set E) and if the lowest of 
all the updates of the five sets of a trial run is considered 
as optimal one or near optimality, the speed or rate of 
convergence is calculated as shown below in table XIII. 
In the above mentioned first trial run the optimum value 
is 39 (i.e. L) and all the calculations in absolute values 
are done with respect to this value. Different optimal 
values for different fields are set as the experiments 
have been carried out in different environmental 
conditions. 

Table XIII 

Speed of Convergence for the Updates for Outdoor Exploration 

Types of Terrains 
Set 
A 

Set 
B 

Set 
C 

Set 
D 

Set 
E 

Plain grass land 0.7 0 - 0 - 

Sandy river bank 0.4 0.7 0 - - 

Hard concrete floor 0.6 0.3 0.5 0 - 

Laterite table land 0.6 0.7 0 - - 

Hard concrete floor 
at night 

0.9 0.2 0 - - 

The speed of convergence lies between 0 and 1 that 
means this is linear in nature. The cell is left blank where 
the value is undefined. The higher values of speed of 
convergence refer to fast reaching of the optimality and 
the lower values lead to slow reaching. However a 
medium speed of convergence is preferred as both 
higher and lower values may be misleading [25]. 

E. Comparison with Other Reinforcement Learning 
Methods 

Dynamic programming and Monte Carlo Methods are 
the two well known methods under reinforcement 
learning. Dynamic programming refers to a collection of 
algorithms that can be used to compute optimal policies 
given a perfect model of the environment as a Markov 
decision process [1]. Monte Carlo methods are ways of 
solving the reinforcement learning problem based on 
averaging sample returns [1]. Experiments have been 
carried out using Dynamic Programming and Monte 
Carlo methods in the indoor environment with same 
environmental and experimental parameters. The results 
obtained are plotted in fig. 13 (a) and (b). Both the 
graphs clearly show (even if only 4 iterations are 
considered for comparison in all cases) that they do not 
follow similar pattern as in the case of HuMAQ and thus 
could not provide efficient learning. In both cases the 
initial learning time is less than the final learning time. 
Human-like gradual learning provides better result than 
these methods. 

� �

Fig. 12(a). Initial Q-table for light sensor during testing on plain grass 
land (b) Final Q-table for light sensor during testing on plain grass land
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Fig. 13. Comparison with other Reinforcement Learning Methods: 
Curves for learning time vs. no. of iterations to reach the goal using (a) 

On-policy Monte Carlo Method [Top] (b) Dynamic Programming 

VI. CONCLUSION

The behavior-based robotics has opened up a new 
field of robotics which uses the Sense →Act paradigm 
for achieving the low-level intelligence easily. Four 
different behavior-based architectures are popular, out 
of which only two (Subsumption architecture and the 
Motor-schema Theory) have been tested to implement 
here.  

The reinforcement learning is a suitable machine 
learning approach for implementing in mobile robots and 
this is a direct system-environment interaction based on 
reward/ punishment policy. Q-learning a sub-issue of 
reinforcement learning uses delayed reward/punishment 
for the previous action. It uses a state-action mapping 
table based on the different conditions of the sensors 
(states) and commands to the actuators (action). Agent 
is a software entity which performs an assigned task 
independently. In most cases Q-learning uses single 
agent to perform all the tasks for learning. Use of 
multiagent is preferred to handle with large numbers of 
sensors and therefore large numbers of state-action 
mapping. 

As revealed from various literatures, human learning 
is cumulative and gradual in nature and as time passes 
the learning time for the same topic/ subject reduces. 
This concept of gradual learning can be incorporated 
with the multiagent Q-learning to get a better 
performance in outdoor terrain explorations by mobile 
robots. 

Here a new approach of multiagent reinforcement 
learning has been proposed using the concept of 
Subsumption architecture, a well-known behavior-based 
architecture, and the gradual learning technique for 
autonomous exploration. It uses different agent on 
single system, not different agents on different systems. 
The testing of HuMAQ in different terrains, different 
static and partial dynamic conditions reveal the 
acceptance of the algorithm for autonomous 
explorations by mobile robots. Also the measurement of 

the performance of the learning algorithm has been 
done from the proof of convergence.
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